
Smart TV Hacking

Target
LG Smart TV - 24LF4820

Pictures - Back Connectors

Picture - Board itself

Connectors
2 x USB Type-A

2 x HDMI out

1 x Ethernet

Display Cable output

1 x 3.5mm serial console input

Attack Vectors
● Serial Console
● Developer Account
● Device Firmware

Serial Console?
The serial console, which runs at 115200 baud, accepts commands and displays output
related to booting the TV.

Serial Console 115200 Output

Serial Message Format
Power On - "ka 00 01"

Power Off - "ka 00 00"

Source: https://github.com/suan/libLGTV_serial/blob/master/libLGTV_serial.py#L17

https://github.com/suan/libLGTV_serial/blob/master/libLGTV_serial.py#L17

Why not write a little fuzzer?

Fuzzer output

Methodology for Fuzzer
I chose to randomly generate commands by selecting random letters and numbers and
putting them together. It would be possible to iterate through all possible
combinations, but at one second an attempt, it would take over 508 days to complete!

What are we looking for with a fuzzer?
1) Serial output indicating a “debug mode” or shell
2) Changes on the main display leading to “hidden menus”.

What did we find?
A bunch of undocumented commands…

...but nothing ultimately interesting to an attacker

Developer Mode

Developer Mode Installation
Developer Mode is an application installed via the “LG TV Store” - another
“application store” on the TV that lets you select and install applications.

Developer Mode Configuration
Requires registration with LG.

After you create a developer account with LG, you can sign into the developer mode
application.

Main Screen

Main Screen
● IP Address (Wireless)
● IP Address (Wired)
● Passphrase
● Remain Session

Remain Session
Developer Mode sessions last 50 hours, and as long as the clock doesn’t reach 0, they
can be extended back to 50 hours by pressing the “EXTEND” button.

If 50 hours passes without the “EXTEND” button being pressed, the Developer Mode
session ends and the user must reauthenticate to the Developer Mode Application

Passphrase
By enabling “KeyServer”, we can download an encrypted RSA private key which can
then be used to SSH into the TV.

The value for this key is a “three byte” string or six digit hex value. Either way there
are only 16 million possible combinations and this encrypted key can be unencrypted
without the passphrase in a few hours.

This key seems to change with every “Developer Mode” application update.

It seems like it might be the same key for every firmware installation.

How did I figure out where the key was?
LG Smart TV development has an SDK that comes with interfacing programs. The
interfacing programs are written in NodeJS, so I just read the source and figured out
where the key was and what username to use.

LG Smart TV SDK
WebOS_SDK_TV_linux64

Contains WebOS_CLI

In this “CLI” program there is ample information on how to ssh into the TV

So what does this reveal?
1) The SSH Server runs on port 9922
2) The SSH username is “prisoner”
3) The Keyserver runs on port 9991 (when enabled)
4) The encrypted RSA private key is at the URL path “/webos_rsa” on the webserver

running on port 9991

Obtaining a foothold

We have no PTY which makes operating difficult, so we start the telnet daemon on
port 8888 and connect to that.

Now that we have a PTY

Whats on this thing?
● Hundreds of binaries on the $PATH
● Things like “arecord”

Thankfully no microphones are attached to the TV model I examined…

...but if there were (maybe on other models?), we’d be able to record input.

Other interesting things

Physical Memory is readable by the prisoner user!

That means we can dump physical memory and root around for passwords and keys

Reading memory...

Kernel version?
● 3.10.27

...which is vulnerable to the “DirtyC0w” linux kernel privilege escalation vulnerability!

Compiling DirtyC0w for ARM
● https://www.exploit-db.com/exploits/40616

…but this exploit’s shell code targets x86/x64 and we’re on ARM.

https://www.exploit-db.com/exploits/40616

I patched MSFVENOM
https://github.com/rapid7/metasploit-framework/pull/12779

https://github.com/rapid7/metasploit-framework/pull/12779

Targeting
Now we can generate the proper shellcode for out target
architecture (ARM-LE)

Unfortunately it is not enough
Even though we have a binary that we can execute and a kernel exploit we can take
advantage of, we cannot gain root access to the Smart TV.

Mount Options
All of the SUID binaries that the exploit could take care of are mounted with the
filesystem option “nosuid”, which means calls to setuid will always return -1 and fail.

The end of this avenue
At this point I did not think I could use the developer shell to escalate privileges to
root. This was the end of this “attack avenue”

Firmware Analysis
One of the first things I did when starting my evaluation was set up a mirror port for
the ethernet connection to the TV.

The TV had not been plugged in for several months, so when I turned on the TV, it
went out and updated the firmware. Because I had the mirror port, I was able to
capture the entire firmware file, along with the URL from which it was retrieved from.

The firmware file was transferred over HTTP.

What’s in the firmware file?
The firmware file is 487 Megabytes in size. Thats a large firmware image!

I ran binwalk over the firmware file:

These binwalk results look random
The binwalk results look like a strange collection of random file types found
throughout the firmware image.

This is because the they are all false positives; the firmware image is encrypted.

I need to find the firmware key!

Is the key specific to a device?
The major concern is whether or not the key is specific to the device.

I answered this by determining that the firmware image seemed to be the only version
of that image possible. So that means all devices of this make and model have the
same key.

But where do I find the key?

Someone else already has!
https://github.com/openlgtv/epk2extract

This tool contains a dictionary of the common known encryption keys for LG Smart
TVs, plus code to extract the proprietary .EPK format.

I used this tool to extract the firmware file-systems to take a closer look.

https://github.com/openlgtv/epk2extract

Firmware file contents

Extraction gives us 6 filesystems
● Fonts.pak
● Otncabi-atsc.pak
● Otycabi-atsc.pak
● rootfs.pak
● smartkey.pak
● tvservice-atsc.pak

All are SQUASHFS filesystems.

Across Six Filesystems
There are 35226 altogether across all filesystems, making manual analysis impractical if
not impossible.

I decide to focus on rootfs.pak as it seems to be the filesystem I landed on with the
developer / “prisoner” SSH shell.

Rootfs.pak
From the developer shell I run “ps auxw” and get a list of running processes. I then
begin auditing all the running processes, looking for binaries that receive network
traffic.

Automated Ghidra Tooling
ATL has built substantial Ghidra Tooling to aid in these situations. I was able to run
Ghidra on “rootfs.pak” and find all binaries that receive network traffic.

Then from this subset I rerun our ghidra function finding tool, but retargeted for
common memory corruption functions, like “strcpy”.

At this point we have a cross reference between functions that receive network traffic
and functions that contain dangerous C functions.

The list length is still in the dozens of binaries, and this doesn’t take into account
shared libraries.

Auditing Selected Binaries
I spent about a week looking through the binaries for memory corruption patterns
downstream from incoming network data functions.

In the end, there was still too much data for one person to manually dig through, so I
stopped at this point as my time was needed elsewhere.

Custom firmware?
My last thought before I gave up on this project was to build my own modified
firmware based off the original firmware I retrieved during the update process.

Unfortunately, portions of the firmware are signed using Public Key Cryptography,
which means without access to a private key I don’t have, I can’t re-sign firmware
images that will successfully pass the signing checks.

Takeaways
● Developer access can and will be abused, whether it be in the embedded space or

the SaaS/web space.
● Bad guys will always be looking through your firmware images for potential

vulnerabilities or other exploitable weakness.
○ Don’t leave cryptographic keys that need to remain secret in firmware!

● Even with the level of access we achieved, we were not able to fully compromise
the device due to the principle of least privilege and separation of operating
system functions into discrete user accounts.

Questions?

