
Reversing Android
Apps

Tools, Techniques, and Practices

Why Reverse Android Apps?

● Secret data that shouldn’t be stored in the app
○ Encryption Keys
○ “Test” account credentials

● Undocumented features or methods of authentication bypass
● Hard to trigger HTTP routes and their parameters
● Usage of HTTP for sensitive data
● “Debug” Functionality
● Anything else that might be useful when you go to hit the server

:-)

Process

● Download App on Android Device
● Find App APK file path
● Pull APK at file path
● Use APKTool to extract APK to resources and bytecode
● Use Dex2Jar to convert from Smali ByteCode to Jar file
● Use JD-GUI (or Fernflower) to decompile back to Java

Acquiring APKs

● Best route is to download to an android device!
● BEST ROUTE IS TO DOWNLOAD TO AN ANDROID DEVICE!
● ...some third party sites allow downloading through a browser

○ However, who knows what they’re doing to the APK file, so
don’t install it or run it!

Roundtrip from APK to Compiler (and back?)

Decompiled Java Source generally cannot be
recompiled to recreate the app.

This is because of the conversion from Dalvik
(smali) bytecode to Java Bytecode

Decompiled Java Source is generally only useful for
figuring out what an app is doing.

However

APKTool output can be rebuilt into an app. So if you
need to flip resource file flags, or edit smali
bytecode by hand, APKtool output can make
roundtrips from app to output and output to app.

But if you make any modifications, you will not be
able to resign the app. The app will run, it’ll just be
invalidly signed :-(

Script to make a production app
debuggable

https://gist.github.com/nstarke/615ca3603fdded8aee47fab6f4917826

https://gist.github.com/nstarke/615ca3603fdded8aee47fab6f4917826

Tools used

● IntelliJ - (https://www.jetbrains.com/idea/download/)

● Android Studio - (https://developer.android.com/studio/index.html)

● ADB (provided by Android Framework - comes bundled with Android Studio)

● APKTool - Extra resources and Smali Bytecode

(https://github.com/iBotPeaches/Apktool)

● Dex2Jar - Extracting Apktool to a Jar file (https://github.com/pxb1988/dex2jar)

● JD (Java Decompiler) - (https://github.com/java-decompiler/jd-gui)

● A script to automate the last three:

(https://gist.github.com/nstarke/d42e138a4338708174e08923cd2a4eb8)

● Fernflower - JetBrains Java Decompiler (Comes with IntelliJ)

● Javap - Viewing Dex2Jar class files disassembled bytecode

https://www.jetbrains.com/idea/download/#section=mac
https://developer.android.com/studio/index.html
https://github.com/iBotPeaches/Apktool
https://github.com/pxb1988/dex2jar
https://github.com/java-decompiler/jd-gui
https://gist.github.com/nstarke/d42e138a4338708174e08923cd2a4eb8

IntelliJ
(https://www.jetbrains.com/idea/download/)

● Java IDE
● Useful for navigating decompiled java code
● Comes bundled with “Fernflower” Java

Decompiler

https://www.jetbrains.com/idea/download/#section=mac

Android Studio
(https://developer.android.com/studio/index.html)

● Contains a bunch of platform tools that might be
useful to android developers

● Contains ADB, which we will definitely need
● Useful for navigating Decompiled Java Code

(Based on IntelliJ)

https://developer.android.com/studio/index.html

ADB (Android Debug Bridge)

● Useful for executing commands on an android
device

● `adb shell pm list packages -f -3` to see all third
party packages

● `adb pull /data/packge/base.apk` to pull APK
from android device

APKTool
(https://github.com/iBotPeaches/Apktool)

● Extract APK archive
● Useful if you want to make manual modifications

to app
● Output can be fed into Dex2Jar to create .class

files from .smali files

https://github.com/iBotPeaches/Apktool

Dex2Jar - (https://github.com/pxb1988/dex2jar)

● Converts .smali files to .class files
● Useful if you want to use another tool to move

from bytecode to .java files
● Output can be fed into a Java Decompiler like JD

or Fernflower for the trip to Java Code

https://github.com/pxb1988/dex2jar

JD-GUI (and JD-CMD)
(https://github.com/java-decompiler/jd-gui)

Java Decompiler that can be run from the command
line via JD-CMD:

https://github.com/kwart/jd-cmd

https://github.com/java-decompiler/jd-gui
https://github.com/kwart/jd-cmd

FernFlower

FernFlower is JetBrains Java Decompiler, and it produces superior
results compared to JD

● `find $INTELLIJ_PATH -name “java-decompiler.jar”`
● Then cd into the folder that contains `java-decompiler.jar`
● `java -cp java-decompiler.jar

org.jetbrains.java.decompiler.main.decompiler.ConsoleDecompi
ler $ARGS`

Javap

● Useful for disassembly .class files (Java
Bytecode - output from Dex2Jar)

● `javap -c $FILE`

I wrote a thing to automate all this!

https://gist.github.com/nstarke/d42e138a433870
8174e08923cd2a4eb8

https://gist.github.com/nstarke/d42e138a4338708174e08923cd2a4eb8
https://gist.github.com/nstarke/d42e138a4338708174e08923cd2a4eb8

Demo Time!

Slides will be available at:

https://secdsm.org

Thank you

https://secdsm.org

