
Reverse Engineering and
Application Development
Iowa Code Camp 2024

whoami

Nicholas Starke

Reverse Engineer at Hewlett Packard Enterprise

Focused on firmware security

Background in Application Development

Agenda

● Why Reverse Engineering?
● Reverse Engineering Tools
● Reverse Engineering .NET
● Reverse Engineering JVM
● Reverse Engineering Native Machine Code Binaries

Why Reverse Engineering?

● To understand the internals of a given piece of software
○ Find Security Vulnerabilities
○ Analyze Malware

● To develop data integrations for proprietary software
● Modify legacy applications to fix vulnerabilities or implement new features

○ Works even when the source code or compiler toolchain is unavailable

Reverse Engineering Tools - .NET

1) dotpeek - https://www.jetbrains.com/decompiler/

2) DnSpyEx - https://github.com/dnSpyEx/dnSpy

3) ILSpy - https://github.com/icsharpcode/ILSpy

4) ildasm / ilasm

https://www.jetbrains.com/decompiler/
https://github.com/dnSpyEx/dnSpy
https://github.com/icsharpcode/ILSpy

Reverse Engineering Tools - JVM

1) JD-GUI - https://java-decompiler.github.io/
2) JADX-GUI (Android) - https://github.com/skylot/jadx
3) Jasper / Jasmin - https://github.com/kohsuke/jasper /

https://github.com/davidar/jasmin

https://java-decompiler.github.io/
https://github.com/skylot/jadx
https://github.com/kohsuke/jasper
https://github.com/davidar/jasmin

Reverse Engineering Tools - Machine Code

1) Ghidra - https://ghidra-sre.org/
2) IDA Pro - https://hex-rays.com/ida-pro
3) Binary Ninja - https://binary.ninja/

https://ghidra-sre.org/
https://hex-rays.com/ida-pro
https://binary.ninja/

Reverse Engineering - .NET

● For applications that compile down to byte code (JVM / CLR, primarily)
there are tools that can take a compiled dll, jar, war, exe and create a
near-source code quality representation of the code.

● There are ways to modify a compiled application without source code.
○ Code signing helps mitigate the risk of this type of attack

● Obfuscation is usually enough of an impediment for Reverse Engineers

Why reverse engineer server-side applications? -
Security

● As an attacker, often compiled applications contain secrets like keys and
passwords

● As an attacker, you might want to modify an application without the source
code

○ This is possible using tools like ILASM.exe/ILDASM.exe for dotnet CLR

Why reverse engineer server-side applications? - Dev

● Have you lost the source code? Data loss does happen :-(
● As a developer, you may need to integrate with a product that has no

documentation (legacy code, anyone?)
● As a developer, you may want to analyze proprietary code to understand

how it works
● As a developer, it is important to understand what an attacker can do with

your production binaries from a security perspective

.NET

● .cs files compile down to .dll or .exe files
● Based on MSIL bytecode for server side apps

○ The equivalent of Java’s JVM Bytecode / Smali Bytecode
● Compiles down to MSIL (Microsoft Intermediate Language)

○ The .NET equivalent of JVM Bytecode
● This runs on the .NET CLR (Common language runtime)
● Source files are .cs files which compile to exe or dll

○ DLL’s more common for web apps

ILSpy

Dotpeek

Client-side .NET

Jadx-gui - https://github.com/skylot/jadx

● Useful for extracting Xamarin Assemblies
● Extracts the static content (res/) from the APK and presents it in a tree

view

https://github.com/skylot/jadx

Client-side .NET

Modifying MSIL Bytecode without Source Code

The next few slides will focus on techniques for modifying MSIL Bytecode without
access to the original source code.

We’ll discuss:

● Why would anyone want to do this?
● Examples
● Process
● Tooling

Why would anyone want to do this?

Development:

● Modify an application when source code is lost

Security:

● Patch an application to log out sensitive information

Examples of Patching MSIL Bytecode - Security

Server-side

● Server side: when a login request is received, log out the username and
password to a file on the filesystem.

Client-side

● Client side: make an HTTP request to an unauthorized remote server with
authentication tokens received from a legitimate authentication request

Process

1) Write out Dotnet code you wish to inject in a console application. Create a function that
accepts the data you wish to operate on.

2) Disassemble this console application
3) Disassemble the source code you wish to inject code into
4) Modify the source code disassembly to include the console application disassembly and

write integration disassembly to call the function you wrote in 1)
5) Reassemble source .cs file
6) Reassemble DLL / Drop on file system cache.

https://starkeblog.com/backdooring/dotnet/2024/04/19/backdooring-dotnet-applications.ht
ml

https://starkeblog.com/backdooring/dotnet/2024/04/19/backdooring-dotnet-applications.html
https://starkeblog.com/backdooring/dotnet/2024/04/19/backdooring-dotnet-applications.html

Dotnet Disassembler / Assembler Duo

Dotnet MSIL Assembler: ILASM.exe -
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler

Dotnet MSIL Disassembler: ILDASM.exe -
https://docs.microsoft.com/en-us/dotnet/framework/tools/ildasm-exe-il-disasse
mbler

● These two tools are built to work with each other.
● Available through Visual Studio Developer Shell

https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler
https://docs.microsoft.com/en-us/dotnet/framework/tools/ilasm-exe-il-assembler

ildasm

Ildasm - Screenshot

How to mitigate this threat

● Strong name signing -
https://docs.microsoft.com/en-us/dotnet/standard/assembly/sign-strong-na
me

● Read only file system for executable code

Android implements code signing by default - consider this for your production
applications even when they are server-side.

Anti-reverse engineering techniques

Obfuscation!

● Dotfuscator - https://www.preemptive.com/products/dotfuscator

Benefits:

● Makes code extremely difficult to reverse
● Makes code extremely difficult to modify

Cons:

● Server-side: usually expensive in terms of $ cost

Goals of Obfuscation

Obfuscation can be used to deter attackers

Usually all you need to do is put up enough of a barrier to entry that it makes a
potential attacker move on to the next target

Obfuscation alone is not sufficient to secure an application!

● Secrets should not be stored in source code
● Secrets should not be stored in source code
● SECRETS SHOULD NOT BE STORED IN SOURCE CODE

Resources

● Managed Code Rootkits (Book):
https://www.amazon.com/Managed-Code-Rootkits-Hooking-Environments/
dp/1597495743

https://www.amazon.com/Managed-Code-Rootkits-Hooking-Environments/dp/1597495743
https://www.amazon.com/Managed-Code-Rootkits-Hooking-Environments/dp/1597495743

Reverse Engineering Java / JVM

● .java files compile down to .class files
● Based on JVM bytecode for server side apps

○ The equivalent of .NET’s MSIL

Server-side Java - JD-GUI

Reverse engineering tools for Server-side Java applications

● JD-GUI (https://github.com/java-decompiler/jd-gui)
● `brew install jd-gui` on MacOS
● Install from github releases on Linux
● Requires JDK 1.8 specifically
● Has sufficient decompiler output
● Can output all java files in a jar

https://github.com/java-decompiler/jd-gui

JD-GUI Screenshot

Java - Fernflower Decompiler

Fernflower is the JetBrains Java Decompiler

● Comes bundled with IntelliJ
● Can be run from the command line directly
● Has much clearer output than JD-GUI
● No UI, outputs .java files

Client-side Java (Native Android)

Jadx-gui - https://github.com/skylot/jadx

● A lot like JD-GUI
● Does all the manual work of extracting the APK then

disassembling/decompiling the SMALI bytecode into Java classes
● Extracts the static content (res/) from the APK and presents it in a tree

view

https://github.com/skylot/jadx

JADX-GUI Screenshot

More JADX-GUI Screenshots

JD-GUI - Scala Decompiler Output

Java Disassembler / Assembler Duo

Java Class Disassembler: Jasper - https://github.com/kohsuke/jasper

Java Class Assembler: Jasmin - https://github.com/davidar/jasmin

● These two tools are built to work with each other.
● Jasmin will not work with “javap -c”!
● Both tools were built between 2000-2004
● Modifications to source are necessary for both to compile with modern

Java tooling.
● Jasper works with maven, Jasmin works with ant.

https://github.com/kohsuke/jasper
https://github.com/davidar/jasmin

How to mitigate this threat

● Jar signing (via `jarsigner` tool)
● Read only file system for executable code

Android implements jar signing by default - consider this for your production
applications even when they are server-side.

JVM: Anti-reverse engineering techniques

Obfuscation!

● Proguard - Java

Benefits:

● Makes code extremely difficult to reverse
● Makes code extremely difficult to modify

Cons:

● Server-side: usually expensive in terms of $ cost

JVM: More Resources

● Covert Java (Book): https://www.amazon.com/dp/0672326388

https://www.amazon.com/dp/0672326388

Native Machine Code

Ghidra - https://ghidra-sre.org/

● Developed by the US National Security Agency
● Open-source

https://ghidra-sre.org/

Ghidra - Disassembler

Ghidra - Patch Binary

Ghidra - Full Screenshot

Questions?

Thank you!

