Boot Security

Why the Hardware Root of Trust Matters

whoami

Nicholas Starke

Senior Security Researcher at Hewlett Packard Enterprise

Professional Reverse Engineer

https://starkeblog.com/

https://starkeblog.com/

Agenda

How do computers boot?

Common Attacks against the boot process
Protections against these attacks

Useful tools for Analysing UEFI images

Why Does Boot Security Matter?

Advanced Adversaries are increasingly “moving down the stack” towards
compromise of low-level components as security measures protecting operating
systems and bootloaders have improved.

(https://thehackernews.com/2023/03/blacklotus-becomes-first-uefi-bootkit.html)

https://thehackernews.com/2023/03/blacklotus-becomes-first-uefi-bootkit.html

Scope

Today’s talk will focus on Intel-based PC firmware
Primarily focused on x86 / x64 Instruction Set Architectures

UEFI does exist for ARM-based PCs

Open Source vs Closed Source

Most UEFI PC Firmware is closed-source

CoreBoot is an Open Source PC Firmware that supports some Motherboards

https.//www.coreboot.org/

https://www.coreboot.org/

How Do Computers Boot?

1) Firmware
2) Bootloader

3) Operating System

Firmware - RESET Vector

Question: Where is the first instruction that a PC executes located in memory?

Firmware - RESET Vector

$ objdump -D -b binary -mi386 --adjust-vma=0xfffffff0 reset-tail.bin

reset-tail.bin: file format binary

Disassembly of section .data:

fFFFFffO <.data>:

FFFEFFfo: 90 nop

FEEFFFFL: 90 nop

FEFFFFF2: e9 3b f8 00 00 jmp 0xf832
fEEffff7: 00 00 add %al, (%eax)
fffffffo: 00 00 add %al, (%eax)
fFFfffeb: 00 00 add %al, (%eax)
FEFFFFFd: 00 f0 add %dh,%al
IRARARARE ff SDiE

https://starkeblog.com/uefi/binary/ghidra/2021/10/24/uefitool-board-init.html

https://starkeblog.com/uefi/binary/ghidra/2021/10/24/uefitool-board-init.html

Reset Vector

Once the CPU is “Released from RESET”, the first instruction to be executed lives in
memory at address F:FFFO - the last 16 bytes of the 32-bit address space.

These instructions are memory mapped to the last 512kb of the data on SPI ROM

What is SPI ROM?

e SPIROMiis achip onthe motherboard where the PC firmware code and
corresponding EF| configuration values live.

G Hiiliiiil

o [
|

il 084S 0

What is PC Firmware?

e First x86 code to run after Power on.
Responsible for constructing the memory map that the OS uses to access
Hardware devices

e Livesonan SPI Chip onthe motherboard

Legacy Boot

Traditionally, PC boot has been handled by BIOS
Basic Input Output System

e EveryBIOS implementation was unique to the model of motherboard it ran on
and implementations varied greatly from manufacturer to manufacturer
e Used Master Boot Record (MBR) format

Master Boot Record (MBR)

BIOS expects the Bootloader (GRUB/Winload) to exist in memory at 0:7c00 and
transfers control of execution to the instructions starting at that address.

0:7c00 is mapped to the first sector of the first hard disk.

Sectors are 512 bytesin length

Limitations of MBR/BIOS

e Only Allows Four Partitions
BIOS Runs in 16-Bit Real Mode
o Debugging 16-bit Real Mode software is incredibly difficult
e BIOS hadto be writtenin assembly

What is UEFI?

Universal Extensible Firmware Interface

A specification for PC firmware to handle the boot process.

(https://uefi.org/specifications)

https://uefi.org/specifications

UEFI Reference Implementation

TianoCore / EDK?2

https://github.com/tianocore/edk?2

https://github.com/tianocore/edk2

UEFI Stages

=

9

Security Phase
Pre-Initialization Phase
Driver Execution Environment
Boot Device Selection
Transient System Load

UEFI Stages - Security Phase

“Initializes a temporary memory (often CPU cache as RAM, or SoC on-chip SRAM,
CAR) and serves as the system'’s software root of trust with the option of verifying
PEI before hand-off.”

(https://en.wikipedia.org/wiki/UEFI)

https://en.wikipedia.org/wiki/UEFI

UEFI Stages - PI

“The second stage of UEFI boot consists of a dependency-aware dispatcher that
loads and runs PEI modules (PEIMs) to handle early hardware initialization tasks
such as main memory initialization (initialize memory controller and DRAM) and
firmware recovery operations.”

(https://en.wikipedia.org/wiki/UEFI)

https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Memory_controller
https://en.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/UEFI

UEFI Stages - PI

File Action

View Help

Structure Information

Name Action Subtype Text
~ 42156D75-10D8-41BF-A9... FFSv2
» AprioriPei Freeform
Padding file Pad
» DebugServicePei PEI module
Padding file Pad
SecMigrationPei PEI module
Padding file Pad
ResetSystemPei PEI module
Padding file Pad
Peivariable PEI module
Padding file Pad
FaultTolerantWritePei PEI module
Padding file Pad
PcatSingleSegmentPci. PEI module
Padding file Pad
PcdPeim PEI module
Padding file Pad

Fixed: No

Base: 1DCD456h
Header addres
FFDCD3E8h

Data address:
FFDCD406h

Offset: 3E8h

File GUII
B73F81B9-1DFC-487C-82
4C-0509EE2B0128

Type: 06h
Attributes:

Full siz

(7850)

Header size: 18h (24)
Body size: 1E92h
(7826)

Tail size: 0h (@)
State: F8h

PEI apriori file
DebugServicePei
SecMigrationPei
ResetSystemPei

Peivariable
FaultTolerantWritePei
PcatSingleSegmentPciCfg2pei

PcdPeim

ExReportStatusCodeRo... PEI module

Padding file
ExStatusCodeHandlerP..
Padding file
PiSmmCommunicationPei

Pad
PEI
Pad
PEI

module

module

ExReportStatusCodeRouterPei
ExStatusCodeHandlerPei

PiSmmCommunicationPei

Header checksum: F7h,
valid

Data checksum: AAh,
valid

Padding file Pad
ReportStatusCodeRout. PEI module
Padding file Pad
CpuIoPei PEI module
Padding file i pad
193ACOF3-8FE6-4EDE-7.. PEI module

ReportStatusCodeRouterPei
CpuIoPei

DellspiFvbServicesPei

parser FIT | Security

Address Size Version Checksum
8 _FIT_ 00000080h 0100h E3h
2 00OOOOOOFF831060h 00093COGh 0100h ©6h
3 00OOOOOOFF8CACE60h 0008BCOGh 0100h ©6h
4 0000000OFF950860h 0EE85CO0h 0106h 66h
5 00OOOOOOFF700000h 00010000h 0100h ©6h
6 005B070100710070h ©00000000h 00EGh 66h
7 00OOOOOOFFAE2000h 00000365h 0100h ©6h
8 0OOOOOOOFFAE3000h 00000479h ©160h 06h

Type Information
FIT Header
Microcode
Microcode
Microcode

CpuSignatur 000806F8h, Revision: 2C000290h, Dat: 26.06.2023

CpuSignature: ©00806F8h, Revision: 2B0004D6h, Date: 16.06.2023

CpuSignaturs 000CO6F2h, Revision: 21000070h, Date: 08.05.2023

Startup ACM Localoffset: 00104000h, EntryPoint: ©0OOE®F4h, ACM SVN: 0002h, Date: 05.04.2023
TXT Policy Index: 005Bh, BitPosition: @7h, AccessWidt 01h, DataRegAddr: 0071h, IndexRegAddr
BootGuard Key Manifest LocalOffset: 00001000h, Version: 21h, KM Version: 01h, KM SVN: @1h

BootGuard Boot Policy LocalOffset: ©0002000h, Version: 23h, BP SVN: @1h, ACM SVN: 02h

0076h

5.bin

UEFI Stages - DXE Phase

“This stage consist of C modules and a dependency-aware dispatcher. With main
memory now available, CPU, chipset, mainboard and other I/O devices are
initialized in DXE and BDS. Initialization at this stage involves assigning EFI device
paths to the hardware connected to the motherboard, and transferring configuration
data to the hardware.”

(https://en.wikipedia.org/wiki/UEFI)

https://en.wikipedia.org/wiki/UEFI

UEFI Stages - DXE Phase

File Action View Help
Structure Information
Name Action Type Subtype Fixed: No
~ UEFI image Image UEFT Offset: 14AA96h
Padding Padding Non-empty File GUI
» 43F9BYQ7-CE71-4A3D-92 Volume FFSv2 264B0245-90CB-4AB1-9A
~ 27A72E80-3118-4CAC-86. Volume FFSV3 80-C23328617A37
» 9E21FD93-9C72-4C15-8 File Volume image Type: 07h
~ EE46C7C1-C9DC-4F47-8. File Volume image Attributes: @0h
~ LzmaCustomDecompre. Section GUID defined Full size: 1CF16h
Raw section Section Raw (118550)
~Volume image section Volume image Header size: 18h (24)
~ 696F2624-E Volume FFSv2
SystemUsbKbDxe File DXE driver UsbKbDxe
SystemUsbMouse. File driver UsbMouseDxe oh (0)
Ftdiusl {SEILE File driver FtdiusbSerialDxe State: F8h
Hiipatabase File driver Hiipatabase Header checksum: BCh,
TcgMor File DXE driver TcgMor
A7458266-63C3- File DXE driver DellBdsDxe
264B0245-90CB-... File DXE driver DellFirmwareManagementDxe
File SMM module DellsmmExternalPointerChecker
2BC6E733-9C File DXE driver DellPciDevice2Dxe
DDBF2888-0A6: File DXE driver DellMemoryInterfaceMemoryDxe
AACT2F35-24BA-. File SMM module DellMemoryInterfaceMemorySmm
File E driver Xpri e
File DXE driver SmbiosStringOverrideDxe
59995375-C63B-. File Freeform
D3893910-1C49-. File Freeform
3731771D-BB37- File Freeform
0558610E-A522-. File Freeform
CC897A59-3586-. File Freeform

>
>
>
»
»
>
>
»
»
»
>
>
»

Parser FIT Security

Address size Version Checksum Type Information
g _FrT_ 00000080h 0100h E3h FIT Header
2 00000000FF831060h 00093CE0h 0100h ©6h Microcode Cpusignature: 000806F8h, Revision: 2C000296h, Date: 20
3 0000000OFFBCAC60h 0008BCOGh 0100h 00 Microcode Cpusignature: 000806F8h, Revision: 2B0004Dh, Date .06.2
4 0PO000OOFFI50860h 00085CO0h 0100h Microcode Cpusignature: 000CO6F2h, Revision: 21000076h, Date: .202;
5 0000000OFF700000h 00010000h 0100h ©6h startup ACM Localoffset: 00104000h, EntryPoint: ©@OOEGF4h, ACM SVN: 0002h, Date: 05.04.2023
6 005B070100710076h 00000000h 0000h © TXT Policy Index: 005Bh, BitPosition: @7h, AccessWidth: @1h, DataRegAddr: 0071h, IndexRegAddr: 007
7 000000OOFFAE2000h 00000365h 0100h BootGuard Key Manifest LocalOffset: 00001000h, Version: 21h, KM Version: 01h, KM SVN: 01h
8 000000OOFFAE3000h 00000479h 0100h BootGuard Boot Policy LocalOffset: 00002000h, Version: 23h, BP SVN: ©1h, ACM SVN: 02h

3
3

Opened: firmware-16€

UEFI Phases - BDS

Boot device selected via EFI Configuration or manual user input

Boot Manager

Boot normally

EFI Virtual disk (0.0)
EFI UMware Uirtual SATA CDROM Drive (0.0
EFI Network

Enter setup
Reset the system
Shut doun the system

T1=Move Highlight Enter>=Select Entry

UEFI - EFI System Partition (ESP)

DXE Phase contains a FAT32 driver that is capable of reading FAT32 partitions.

It finds the “ESP” and if configured to do so, executes an EFl program from that
partition.

By Default, this is /boot/efi/EFI/BOOT/BOOTx64.EFI

UEFI - ESP Under Linux

nick@ubuntu-efi:™% find sboot/efi -type f
/hoot/eti/EFI/ubuntu/grubxed.efi
Jhoot/efi/EFI/ubuntu/shimxbd . efi
’hoot/efi/EFI/ubuntu/mmx64.efi

/hoot /et i/EFI/ubuntu/BO0TX64.CSV

/boot/ef 1/EFI/ubuntu/grub.cfg
/boot/et 1/EFI/B0O0T/BO0TX6E4.EFI
/boot/efi/EFI/BO0T/fhx6d.efi
/boot/efi/EFI/BO0T/mmx64.ef i
nick@ubuntu-efi:™%

EFI Modules / EFI Applications

e EFIModules and EFI Applications are PE32 Binaries - similar to Microsoft
Windows Executables
e Incontrastto Linux ELF files / Apple Mach-O files.

EFI Applications

Shell.efi - EFI Shell

Winload.efi - Windows Bootloader
Grub2.efi - Linux Bootloader
Shim.efi - Linux Secure Boot Shim

UEFI Hand-off to Bootloader

When EFl is complete, it calls an EFI function called ExitBootServices that then
transfers control of execution to a bootloader.

For windows that is winload.efi and for Linux it is grub2.efi.

Grub2

GRand Unified Bootloader 2
(https://www.gnu.org/software/qrub/index.html)

e Standard Linux Bootloader (Equivalent of winload.efi in Windows)

https://www.gnu.org/software/grub/index.html

Bootloader - What is it used for?

Grub2 under EFI Allows the user to select an OS image to execute
This allows for dual booting Windows/Linux on the same host

Grub2 under BIOS handles the FAT32 partition parsing/loading.
Responsible for starting kernel with proper command line parameters

Grub2

1
commands befo

Common Attacks Against the Boot Process

Typically, an attacker will want to subvert the boot process to accomplish two goals:

1) Achieve Persistence
2) Hide from Antivirus/ EDR

Goal 1: Persistence

e Persistence across boot cycles (more prevalent in embedded products)
e Persistence across OS reinstallation

Goal 2: Hide from EDR / Antivirus

“He who executes first, executes Best” ~ Ancient OST2 Proverb (Xeno Kovah)

e Executingearlyinthe boot process allows attackers to bypass or disable EDR
solutions, as these solutions only have visibility into the primary operating
system internals

Windows Platform Binary Table (WPBT)

The WPBT is a fixed Advanced Configuration and Power Interface (ACPI) table that enables
boot firmware to provide Windows with a platform binary that the operating system can
execute. The binary handoff medium is physical memory, allowing the boot firmware to
provide the platform binary without modifying the Windows image on disk.

(https://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf9

05a80/windows-platform-binary-table.docx)

https://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf905a80/windows-platform-binary-table.docx
https://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf905a80/windows-platform-binary-table.docx

WPBT from an adversaries' Perspective

Allows DXE drivers to “embed” windows executables so that the executable is
executed as SYSTEM upon OS initialization

Combine this with the ability to disable/bypass EDR and an adversary has
everything they need to achieve persistence and stealth.

What about Linux?

Linux does not currently have an equivalent for WBPT, but there are still ways to
accomplish the same goals.

e There are opensource EFI Drivers for EXT2/3/4 filesystems that allow firmware
to drop files onto a Linux filesystem.

e The firmware would need to parse/load the ext2 filesystem and write to a
filesystem location that the chosen init system would pick up and execute.

Runtime Attacks

EFl exposes “Runtime Services” which may be executed after ExitBootServices is
called and the operating system is loaded.

These sorts of attacks focus on executing code in System Management Mode (SMM)

System Management Mode (SMM)

Very privileged code execution level - provides the ability to modify the contents of
SPI ROM.

Modifying SPI ROM, where the firmware is located, can allow an attacker to
potentially disable security features that are meant to protect the host from firmware
attacks.

(https://en.wikipedia.org/wiki/System Management Mode)

https://en.wikipedia.org/wiki/System_Management_Mode

SMM - Callout Attacks

e Occur when a System Management Mode Interrupt Handler attempts to call EFI
Runtime Services or EFIl Boot Services functions.

e These services are references by a global EFI struct that contains function
pointers.

e The memory locations these function pointers point to can be overwritten in
physical memory when executing in the context of the kernel (Kernel
Drivers/Modules)

SMM - Callout Attacks

undefined8 swSmiHandler38(void)

{
EFI HANDLE local resl8 [2];

(*gBS->LocateProtocol) ((EFI_GUID *)&DAT 800071e0, (void *)0x0, (void **)&DAT 8000
(*gBS->LocateProtocol) ((EFI_GUID *)&DAT 80007240, (void *)0Ox0, (void **)&DAT 8000
if (DAT 80008340 != 0) {

DAT 80008320 = DAT 80008340 + 0x100;
*(undefined *) (DAT 80008340 + 0x19d) = 1;
}
local resl18[0] = (EFI_HANDLE)OxO0;
(*gSmstl2->SmmInstallProtocolInterface)
(local res18,&unknownProtocol 33fef311,EFI NATIVE INTERFACE, (void *)0
return 0;

https://starkeblog.com/uefi/smm/2022/05/10/smm-callout-in-hp-products.html

https://starkeblog.com/uefi/smm/2022/05/10/smm-callout-in-hp-products.html

Evil Maid Attacks

Occurs when an attacker has physical access to a device and can modify some aspect
of the device so that the system owner does not know the device has been modified
maliciously.

(https://en.wikipedia.org/wiki/Evil maid_attack)

https://en.wikipedia.org/wiki/Evil_maid_attack

More SMM Attacks

e https://jiensn.com/at-home-in-your-firmware/
e https://github.com/tandasat/SmmExploit

https://jjensn.com/at-home-in-your-firmware/
https://github.com/tandasat/SmmExploit

Protections against Boot Attacks

Secure Boot is a protocol defined within UEFI

e Secure Boot allows the UEFI firmware to cryptographically validate each of the
boot phases before control of execution is passed along to each boot phase.

e Upon BDS, Secure boot allows the UEFI firmware to validate the bootloader
image to ensure it has not been modified from its original form.

How does Secure Boot Work?

e Uses the Trusted Platform Module (TPM) to verify the cryptographic hash of
the code for the next stage in the boot process before that stage is executed
o If the hash matches, the code has not been modified from its originally
intended form and can be safely executed.
o If the hash does not match, the code has been corrupted or maliciously
modified and the firmware will then refuse to execute the code.

What is a TPM?

A TPM is a hardened component that is meant to provide protection from physical
tampering.

The TPM has its own built-in cryptographic functions (encrypting/decrypting +
hashing). This way, an attacker cannot modify, for example, the SHA256 hash
function to return a hard coded hash value as a means to bypass certain integrity
checks.

Secure Boot Chain

This chain of verifications form what is referred to as the Hardware Root of Trust.
SEC Verifies PEI

PEI Verifies DXE

DXE Verifies BDS

BDS Verifies Bootloader

Bootloader Verifies OS

OS Verifies Kernel Drivers

But what verifies SEC?

In systems with Intel Bootguard, the SEC phase is verified by an Authenticated Code
Module (ACM) that uses keys burned via One Time Programmable fuse in the
Platform Configuration Hub (PCH)

In Systems without Intel Bootguard, the SEC phase is NOT protected.

FNCML357
Bios Version: FNCML357.0052.2021.0409.1144
Processor: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz

System Date & Time: 10/22/2024 12:36:10 PM (intel

Power Boot = |

Main Advanced Cooling Performance Security

Secure Boot

Information
System Mode User

Secure Boot

" Secure Boot feature is Active if Secure Boot is
Bisobled n Enabled,

g Platform Key(PK) is enrolled and the System is in
Not Active User mode.

The mode change requires platferm reset
Standard n

Secure Boot Mode

For support visit

T - Select Item F3 - Previous Values F9 - Optimal Defaults
=+ - Select Menu Enter - Se ub-Menu F10-

ave and Exit

Version 2.20.0050. Copyright (C) 2021 American Megatrends, Inc.

Tools for Analyzing UEFI Images

e UEFITool - https://github.com/LongSoft/UEFITool
e Ghidra - https://github.com/NationalSecurityAgency/ghidra
o Ghidra-firmware-utils -
https://github.com/al3xtjiames/ghidra-firmware-utils
o efiSeek - https://github.com/DSecurity/efiSeek
e |DAPro - https://hex-rays.com/ida-pro

o efiXplorer - https://github.com/binarly-io/efiXplorer

https://github.com/LongSoft/UEFITool
https://github.com/NationalSecurityAgency/ghidra
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/DSecurity/efiSeek
https://hex-rays.com/ida-pro
https://github.com/binarly-io/efiXplorer

UEFIToo

File Action View Help

Structure Information

Name Action Subtype Fixed: No

» UEFT image UEFI Ba

Header a
FFDCD3E8h
Data addres
FFDCD400h
Offset: 3E8h
File GUID:

Tail size: oh ()
State h

Header checksum: F7h,
valid

Data checksum: AAh,
vali

Parser FIT Security

parseVoluneHeader: unaligned volume
parseVolumeHeader: unaligned volume

parsevolumeHeader: unaligned volume

parseVolumeteader: unaligned volume

parsevolumeHeader: unaligned volume

parsevoluneHeader: unaligned volume

parsevoluneHeader: unaligned volume

parseVolumeHeader: unaligned volume

parsevolumeHeader: unaligned volume

findFitRecursive: FIT table candidate found, but not referenced from the last VTF
findFitRecursive: real FIT table found at physical address FFAE1000h

UEFITool

Useful for analyzing the contents of an EFIl Image in terms of SEC/PI/DXE modules
Useful for extracting individual modules from a large EFI blob

Useful for searching for GUIDs and ASCII/Unicode strings in a monolithic EFI blob

CodeBrowser: dell-precision-bios:/firmware-156.bin/Volume 001 - 27a72e80-3118-4c0c-8673-aa5b4efa9613/File 000 - 9e21fd93-9c72-4¢15-8c4b-e77f1db2d792/GUID-Defined Sect...
File Edit ys ph Navigation /indow Help
B -= BREBEDRDB I =

ad n-a-

M B % X || [E Listing: PE32

npile: Undefine

2JlBAGUBAG UndefinedFu

ram Tree x

ol Tree

= FUN_8

B~ FUN
FUN
FUN
FUN_
FUN_

3 return
riptin

oing Call
No Function No Function

A Filter

Ghidra

Useful for analyzing the actual extracted modules

Provides disassembly and decompiler output (an approximation at a higher level,
“Pseudo C” syntax

Additional Resources

Architecture 4001: x86-64 Intel Firmware Attack & Defense

Trusted Computing 1101: Introductory Trusted Platform Module (TPM) usage

https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+Arch4001_x86-64_RVF+2021_v1/home
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+TC1101_IntroTPM+2024_v2/home

Summary

The PC Boot Process is a complex endeavor
Adversaries are targeting this process to compromise hosts

Robust, cryptographically guaranteed countermeasures have come to market to
mitigate the risks posed by attacks at such a low level

Thank you! Questions?

https://starkeblog.com/

https://starkeblog.com/

