
Boot Security

Why the Hardware Root of Trust Matters

whoami

Nicholas Starke

Senior Security Researcher at Hewlett Packard Enterprise

Professional Reverse Engineer

https://starkeblog.com/

https://starkeblog.com/

Agenda

● How do computers boot?

● Common Attacks against the boot process

● Protections against these attacks

● Useful tools for Analysing UEFI images

Why Does Boot Security Matter?

Advanced Adversaries are increasingly “moving down the stack” towards

compromise of low-level components as security measures protecting operating

systems and bootloaders have improved.

(https://thehackernews.com/2023/03/blacklotus-becomes-first-uefi-bootkit.html)

https://thehackernews.com/2023/03/blacklotus-becomes-first-uefi-bootkit.html

Scope

Today’s talk will focus on Intel-based PC firmware

Primarily focused on x86 / x64 Instruction Set Architectures

UEFI does exist for ARM-based PCs

Open Source vs Closed Source

Most UEFI PC Firmware is closed-source

CoreBoot is an Open Source PC Firmware that supports some Motherboards

https://www.coreboot.org/

https://www.coreboot.org/

How Do Computers Boot?

1) Firmware

2) Bootloader

3) Operating System

Firmware - RESET Vector

Question: Where is the first instruction that a PC executes located in memory?

Firmware - RESET Vector

https://starkeblog.com/uefi/binary/ghidra/2021/10/24/uefitool-board-init.html

https://starkeblog.com/uefi/binary/ghidra/2021/10/24/uefitool-board-init.html

Reset Vector

Once the CPU is “Released from RESET”, the first instruction to be executed lives in

memory at address F:FFF0 - the last 16 bytes of the 32-bit address space.

These instructions are memory mapped to the last 512kb of the data on SPI ROM

What is SPI ROM?

● SPI ROM is a chip on the motherboard where the PC firmware code and

corresponding EFI configuration values live.

What is PC Firmware?

● First x86 code to run after Power on.

● Responsible for constructing the memory map that the OS uses to access

Hardware devices

● Lives on an SPI Chip on the motherboard

Legacy Boot

Traditionally, PC boot has been handled by BIOS

Basic Input Output System

● Every BIOS implementation was unique to the model of motherboard it ran on

and implementations varied greatly from manufacturer to manufacturer

● Used Master Boot Record (MBR) format

Master Boot Record (MBR)

BIOS expects the Bootloader (GRUB/Winload) to exist in memory at 0:7c00 and

transfers control of execution to the instructions starting at that address.

0:7c00 is mapped to the first sector of the first hard disk.

Sectors are 512 bytes in length

Limitations of MBR/BIOS

● Only Allows Four Partitions

● BIOS Runs in 16-Bit Real Mode

○ Debugging 16-bit Real Mode software is incredibly difficult

● BIOS had to be written in assembly

What is UEFI?

Universal Extensible Firmware Interface

A specification for PC firmware to handle the boot process.

(https://uefi.org/specifications)

https://uefi.org/specifications

UEFI Reference Implementation

TianoCore / EDK2

https://github.com/tianocore/edk2

https://github.com/tianocore/edk2

UEFI Stages

1) Security Phase

2) Pre-Initialization Phase

3) Driver Execution Environment

4) Boot Device Selection

5) Transient System Load

UEFI Stages - Security Phase

“Initializes a temporary memory (often CPU cache as RAM, or SoC on-chip SRAM,
CAR) and serves as the system's software root of trust with the option of verifying
PEI before hand-off.”

(https://en.wikipedia.org/wiki/UEFI)

https://en.wikipedia.org/wiki/UEFI

UEFI Stages - PI

“The second stage of UEFI boot consists of a dependency-aware dispatcher that
loads and runs PEI modules (PEIMs) to handle early hardware initialization tasks
such as main memory initialization (initialize memory controller and DRAM) and
firmware recovery operations.”

(https://en.wikipedia.org/wiki/UEFI)

https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Memory_controller
https://en.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/UEFI

UEFI Stages - PI

UEFI Stages - DXE Phase

“This stage consist of C modules and a dependency-aware dispatcher. With main
memory now available, CPU, chipset, mainboard and other I/O devices are
initialized in DXE and BDS. Initialization at this stage involves assigning EFI device
paths to the hardware connected to the motherboard, and transferring configuration
data to the hardware.”

(https://en.wikipedia.org/wiki/UEFI)

https://en.wikipedia.org/wiki/UEFI

UEFI Stages - DXE Phase

UEFI Phases - BDS

Boot device selected via EFI Configuration or manual user input

UEFI - EFI System Partition (ESP)

DXE Phase contains a FAT32 driver that is capable of reading FAT32 partitions.

It finds the “ESP” and if configured to do so, executes an EFI program from that

partition.

By Default, this is /boot/efi/EFI/BOOT/BOOTx64.EFI

UEFI - ESP Under Linux

EFI Modules / EFI Applications

● EFI Modules and EFI Applications are PE32 Binaries - similar to Microsoft

Windows Executables

● In contrast to Linux ELF files / Apple Mach-O files.

EFI Applications

● Shell.efi - EFI Shell

● Winload.efi - Windows Bootloader

● Grub2.efi - Linux Bootloader

● Shim.efi - Linux Secure Boot Shim

UEFI Hand-off to Bootloader

When EFI is complete, it calls an EFI function called ExitBootServices that then

transfers control of execution to a bootloader.

For windows that is winload.efi and for Linux it is grub2.efi.

Grub2

GRand Unified Bootloader 2

(https://www.gnu.org/software/grub/index.html)

● Standard Linux Bootloader (Equivalent of winload.efi in Windows)

https://www.gnu.org/software/grub/index.html

Bootloader - What is it used for?

● Grub2 under EFI Allows the user to select an OS image to execute

● This allows for dual booting Windows/Linux on the same host

● Grub2 under BIOS handles the FAT32 partition parsing/loading.

● Responsible for starting kernel with proper command line parameters

Grub2

Common Attacks Against the Boot Process

Typically, an attacker will want to subvert the boot process to accomplish two goals:

1) Achieve Persistence

2) Hide from Antivirus / EDR

Goal 1: Persistence

● Persistence across boot cycles (more prevalent in embedded products)

● Persistence across OS reinstallation

Goal 2: Hide from EDR / Antivirus

“He who executes first, executes Best” ~ Ancient OST2 Proverb (Xeno Kovah)

● Executing early in the boot process allows attackers to bypass or disable EDR

solutions, as these solutions only have visibility into the primary operating

system internals

Windows Platform Binary Table (WPBT)

The WPBT is a fixed Advanced Configuration and Power Interface (ACPI) table that enables
boot firmware to provide Windows with a platform binary that the operating system can
execute. The binary handoff medium is physical memory, allowing the boot firmware to
provide the platform binary without modifying the Windows image on disk.

(https://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf9
05a80/windows-platform-binary-table.docx)

https://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf905a80/windows-platform-binary-table.docx
https://download.microsoft.com/download/8/a/2/8a2fb72d-9b96-4e2d-a559-4a27cf905a80/windows-platform-binary-table.docx

WPBT from an adversaries’ Perspective

Allows DXE drivers to “embed” windows executables so that the executable is

executed as SYSTEM upon OS initialization

Combine this with the ability to disable/bypass EDR and an adversary has
everything they need to achieve persistence and stealth.

What about Linux?

Linux does not currently have an equivalent for WBPT, but there are still ways to

accomplish the same goals.

● There are open source EFI Drivers for EXT2/3/4 filesystems that allow firmware

to drop files onto a Linux filesystem.

● The firmware would need to parse/load the ext2 filesystem and write to a

filesystem location that the chosen init system would pick up and execute.

Runtime Attacks

EFI exposes “Runtime Services” which may be executed after ExitBootServices is

called and the operating system is loaded.

These sorts of attacks focus on executing code in System Management Mode (SMM)

System Management Mode (SMM)

Very privileged code execution level - provides the ability to modify the contents of

SPI ROM.

Modifying SPI ROM, where the firmware is located, can allow an attacker to

potentially disable security features that are meant to protect the host from firmware

attacks.

(https://en.wikipedia.org/wiki/System_Management_Mode)

https://en.wikipedia.org/wiki/System_Management_Mode

SMM - Callout Attacks

● Occur when a System Management Mode Interrupt Handler attempts to call EFI

Runtime Services or EFI Boot Services functions.

● These services are references by a global EFI struct that contains function

pointers.

● The memory locations these function pointers point to can be overwritten in

physical memory when executing in the context of the kernel (Kernel

Drivers/Modules)

SMM - Callout Attacks

https://starkeblog.com/uefi/smm/2022/05/10/smm-callout-in-hp-products.html

https://starkeblog.com/uefi/smm/2022/05/10/smm-callout-in-hp-products.html

Evil Maid Attacks

Occurs when an attacker has physical access to a device and can modify some aspect

of the device so that the system owner does not know the device has been modified

maliciously.

(https://en.wikipedia.org/wiki/Evil_maid_attack)

https://en.wikipedia.org/wiki/Evil_maid_attack

More SMM Attacks

● https://jjensn.com/at-home-in-your-firmware/

● https://github.com/tandasat/SmmExploit

https://jjensn.com/at-home-in-your-firmware/
https://github.com/tandasat/SmmExploit

Protections against Boot Attacks

Secure Boot is a protocol defined within UEFI

● Secure Boot allows the UEFI firmware to cryptographically validate each of the

boot phases before control of execution is passed along to each boot phase.

● Upon BDS, Secure boot allows the UEFI firmware to validate the bootloader

image to ensure it has not been modified from its original form.

How does Secure Boot Work?

● Uses the Trusted Platform Module (TPM) to verify the cryptographic hash of

the code for the next stage in the boot process before that stage is executed

○ If the hash matches, the code has not been modified from its originally

intended form and can be safely executed.

○ If the hash does not match, the code has been corrupted or maliciously

modified and the firmware will then refuse to execute the code.

What is a TPM?

A TPM is a hardened component that is meant to provide protection from physical

tampering.

The TPM has its own built-in cryptographic functions (encrypting/decrypting +

hashing). This way, an attacker cannot modify, for example, the SHA256 hash

function to return a hard coded hash value as a means to bypass certain integrity

checks.

Secure Boot Chain

This chain of verifications form what is referred to as the Hardware Root of Trust.

SEC Verifies PEI

PEI Verifies DXE

DXE Verifies BDS

BDS Verifies Bootloader

Bootloader Verifies OS

OS Verifies Kernel Drivers

But what verifies SEC?

In systems with Intel Bootguard, the SEC phase is verified by an Authenticated Code

Module (ACM) that uses keys burned via One Time Programmable fuse in the

Platform Configuration Hub (PCH)

In Systems without Intel Bootguard, the SEC phase is NOT protected.

Tools for Analyzing UEFI Images

● UEFITool - https://github.com/LongSoft/UEFITool

● Ghidra - https://github.com/NationalSecurityAgency/ghidra

○ Ghidra-firmware-utils -

https://github.com/al3xtjames/ghidra-firmware-utils

○ efiSeek - https://github.com/DSecurity/efiSeek

● IDAPro - https://hex-rays.com/ida-pro

○ efiXplorer - https://github.com/binarly-io/efiXplorer

https://github.com/LongSoft/UEFITool
https://github.com/NationalSecurityAgency/ghidra
https://github.com/al3xtjames/ghidra-firmware-utils
https://github.com/DSecurity/efiSeek
https://hex-rays.com/ida-pro
https://github.com/binarly-io/efiXplorer

UEFITool

UEFITool

Useful for analyzing the contents of an EFI Image in terms of SEC/PI/DXE modules

Useful for extracting individual modules from a large EFI blob

Useful for searching for GUIDs and ASCII/Unicode strings in a monolithic EFI blob

Ghidra

Ghidra

Useful for analyzing the actual extracted modules

Provides disassembly and decompiler output (an approximation at a higher level,

“Pseudo C” syntax

Additional Resources

Architecture 4001: x86-64 Intel Firmware Attack & Defense

Trusted Computing 1101: Introductory Trusted Platform Module (TPM) usage

https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+Arch4001_x86-64_RVF+2021_v1/home
https://apps.p.ost2.fyi/learning/course/course-v1:OpenSecurityTraining2+TC1101_IntroTPM+2024_v2/home

Summary

The PC Boot Process is a complex endeavor

Adversaries are targeting this process to compromise hosts

Robust, cryptographically guaranteed countermeasures have come to market to

mitigate the risks posed by attacks at such a low level

Thank you! Questions?

https://starkeblog.com/

https://starkeblog.com/

