
Introduction to Reverse Engineering
Server-Side Applications for Web

Developers
A brief survey of tools and techniques

Agenda

● Goals of Server-side application reverse engineering
● Java
● Dotnet
● JavaScript (Briefly)
● Anti-reverse engineering techniques

New presentation, who dis?

Nick Starke

Threat Researcher at Aruba Threat Labs within the Office of the CTO at Aruba
Networks / Hewlett Packard Enterprise

● Focused on firmware security, especially in networking appliances
● Board member of SecDSM (https://secdsm.org)
● Lives in Bondurant!
● Moved into Security from Web Development
● Blog: https://nstarke.github.com
● Bandcamp: https://nstarke.bandcamp.com

https://secdsm.org
https://nstarke.github.com
https://nstarke.bandcamp.com

TL;DR

● For applications that compile down to byte code (JVM / CLR, primarily) there
are tools that can take a compiled dll, jar, war, exe and create a near-source
code quality representation of the code.

● Except for one tool, this code cannot be recompiled from the tool output.
● There are ways to modify a compiled application without source code.
● For applications written in interpreted languages (python, ruby, javascript)

there is no compiled code (usually) so Reverse engineering becomes a
code-review exercise

● Obfuscation is usually enough of an impediment for Reverse Engineers

Why reverse engineer server-side applications? - Security

● As an attacker, often compiled applications contain secrets like keys and
passwords

● As an attacker, you might want to modify an application without the source
code (watttttttt)

○ This is possible using tools like ILDASM/ILASM for .NET and Jasper/Jasmin for Java
○ However, it is not possible for the most part with the tools presented today
○ We won’t cover this in any detail in this presentation :-)

Why reverse engineer server-side applications? - Dev

● Have you lost the source code? Data loss does happen :-)
● As a developer, you may need to integrate with a product that has no

documentation (legacy code anyone?)
● As a developer, you may want to analyze proprietary code to understand how

it works
● As a developer, it is important to understand what an attacker can do with

your production binaries from a security perspective

Java

● .java files compile down to .class files
● Based on JVM bytecode for server side apps

○ The equivalent of .NET’s MSIL

Java - JD-GUI

Reverse engineering tools for Java applications

● JD-GUI (https://github.com/java-decompiler/jd-gui)
● `brew install jd-gui` on MacOS
● Install from github releases on Linux
● Requires JDK 1.8 specifically
● Has sufficient decompiler output
● Can output all java files in a jar

https://github.com/java-decompiler/jd-gui

JD-GUI Screenshot

Java - Fernflower

Fernflower is the JetBrains Java Decompiler

● Comes bundled with IntelliJ
● Can be run from the command line directly
● Has much clearer output than JD-GUI
● No UI, outputs .java files

What about other JVM Languages?

JD-GUI Scala:

Dotnet

● Compiles down to MSIL (Microsoft Intermediate Language)
○ The .NET equivalent of JVM Bytecode

● This runs on the .NET CLR (Common language runtime)
● Source files are .cs files which compile to exe or dll

○ DLL’s more common for web apps

Dotnet - ILSpy

ILSpy - https://github.com/icsharpcode/ILSpy

● Open source
● Can run on Linux/MacOS/Windows
● Sufficient Output

https://github.com/icsharpcode/ILSpy

ILSpy Screenshot

Dotnet - dotPeek

dotPeek - https://www.jetbrains.com/decompiler/

● JetBrains dotnet Decompiler
● Closed Source
● Free to use
● Can attempt to export DLL / EXE files as visual studio projects for

recompilation

https://www.jetbrains.com/decompiler/

Dotpeek Screenshot

JavaScript

Not compiled down to bytecode / binary (uses JIT compilation for machine code
instructions)

● Can be “minified” or “obfuscated” which makes JS difficult to
read/comprehend

● Best tool to handle difficult to read JavaScript is js-beautify
● `npm i -g js-beautify`
● Runs from CLI

Example of Obfuscated JS

Anti-reverse engineering techniques

Obfuscation!

● Dotfuscator - dotnet
● Proguard - Java

Benefits:

● Makes code extremely difficult to reverse
● Makes code extremely difficult to modify

Cons:

● Server-side: usually expensive in terms of $ cost

Goals of Obfuscation

Obfuscation can be used to deter attackers

Usually all you need to do is put up enough of a barrier to entry that it makes a
potential attacker move on to the next target

Obfuscation alone is not sufficient to secure an application!

● Secrets should not be stored in source code
● Secrets should not be stored in source code
● SECRETS SHOULD NOT BE STORED IN SOURCE CODE

Thank you!

Questions?

Contact:

https://twitter.com/nstarke

In depth presentation on dotnet / java reverse engineering coming later this fall at
IADNUG and CIJUG - stay tuned!

● Blog: https://nstarke.github.com
● Bandcamp: https://nstarke.bandcamp.com

https://twitter.com/nstarke
https://nstarke.github.com
https://nstarke.bandcamp.com

