
Reverse Engineering
an N-Day
Vulnerability

Nicholas Starke / BSides Iowa 2022

Who am I?

Nicholas Starke

Threat Researcher at Aruba Threat Labs in the
Office of the CTO at Aruba Networks - a Hewlett
Packard Enterprise Company.

Researcher specialized in firmware security.

Focused on everything from Linux-based
networking appliance firmware to UEFI-based
firmware.

WARNING!!!!

THERE ARE NO MEMES IN THIS PRESENTATION.

I would recommend you go to another presentation if that
bothers you, but we’re single track this year so you’re stuck
with me and my inability to meme for the next hour.

If that bothers you maybe go play the CTF for a bit. I won’t
hold it against you.

Goal of this Presentation

We will go from a security vulnerability advisory with
a few details to a small proof of concept script written
in Python.

We will rely largely on Ghidra for reverse engineering
in this presentation, but other RE frameworks could
work.

Prior Art: We Stand on the Shoulders of
Giants
Original Write up for CVE-2022-45608:

https://www.sentinelone.com/labs/cve-2021-45608-netusb-rce-fl
aw-in-millions-of-end-user-routers/

This article mentions working off of an existing exploit for
CVE-2015-3036 originally written by blasty:

https://github.com/blackorbird/exploit-database/blob/master/explo
its/multiple/remote/38454.py

Finally, the original write up mentions this Netgear Advisory:

https://kb.netgear.com/000064437/Security-Advisory-for-Pre-Aut
hentication-Buffer-Overflow-on-Multiple-Products-PSV-2021-02
78

https://www.sentinelone.com/labs/cve-2021-45608-netusb-rce-flaw-in-millions-of-end-user-routers/
https://www.sentinelone.com/labs/cve-2021-45608-netusb-rce-flaw-in-millions-of-end-user-routers/
https://twitter.com/bl4sty
https://github.com/blackorbird/exploit-database/blob/master/exploits/multiple/remote/38454.py
https://github.com/blackorbird/exploit-database/blob/master/exploits/multiple/remote/38454.py
https://kb.netgear.com/000064437/Security-Advisory-for-Pre-Authentication-Buffer-Overflow-on-Multiple-Products-PSV-2021-0278
https://kb.netgear.com/000064437/Security-Advisory-for-Pre-Authentication-Buffer-Overflow-on-Multiple-Products-PSV-2021-0278
https://kb.netgear.com/000064437/Security-Advisory-for-Pre-Authentication-Buffer-Overflow-on-Multiple-Products-PSV-2021-0278

Prior Art: Reiteration

I was not involved in any way in the discovery of either CVE-2021-45608 or
CVE-2015-3036

Props to

https://twitter.com/maxpl0it (CVE-2021-45608)

and

https://twitter.com/bl4sty (exploit for CVE-2015-3036)

https://twitter.com/maxpl0it
https://twitter.com/bl4sty

Prior Art: Link to Original Sentinel Labs
Write up

Link to
https://www.sentinelone.com/labs/cve-2021-45608-netu
sb-rce-flaw-in-millions-of-end-user-routers/

https://www.sentinelone.com/labs/cve-2021-45608-netusb-rce-flaw-in-millions-of-end-user-routers/
https://www.sentinelone.com/labs/cve-2021-45608-netusb-rce-flaw-in-millions-of-end-user-routers/

So what did I do?

I took the original advisory from Sentinel Labs (by Max Van Amerongen)
and developed a small proof of concept that demonstrates the
vulnerability.

The original advisory declined to provide a proof of concept.

The Proof of Concept I wrote was based heavily on the Blasty exploit
written in 2016.

Blasty’s script was a full fledge exploit.

My Proof of Concept used the authentication handshake from Blasty’s
exploit specifically.

Journey of Discovery

This presentation is not meant to bro down on
this specific vulnerability.

My goal is to demonstrate the process of taking a
N-Day vulnerability and figuring out how to write
a proof of concept for it.

We will go through this vulnerability in detail, but
I hope to highlight more how I approach the
problem than the technical details.

Tools Used

● Ghidra
● Bindiff 7
● binwalk
● Visual Studio Code
● UART to USB cable
● GNU Screen

The first three are the most important

Tools Used - Ghidra

Software Reverse Engineering toolbox

Along the lines of Binary Ninja or IDA Pro

…except it is free…

…and written and maintained by NSA.

https://github.com/NationalSecurityAgency/ghidra

https://github.com/NationalSecurityAgency/ghidra

Tools Used - Bindiff 7

Useful tool for finding changes / differences in binary
computer programs

Ghidra plugin can be found here:

https://github.com/google/binexport/tree/main/java

Official Website: https://www.zynamics.com/bindiff.html

https://github.com/google/binexport/tree/main/java
https://www.zynamics.com/bindiff.html

Binwalk
1) Open source project
2) Maintained here: https://github.com/refirmlabs/binwalk
3) Takes an unstructured binary file, such as a firmware

image file, and extracts structured data from it, such as
filesystems.

4) Run likes this: $ binwalk -eM $FW_FILEPATH

https://github.com/refirmlabs/binwalk

What is the bug?

The original advisory states there is a heap-based buffer overflow in a
software component that runs on many different vendors products.

This buffer overflow can be exploited over the network remotely.

The vulnerable component is a Linux Kernel module named
NetUSB.ko.

NetUSB.ko runs a TCP server that accepts input on all interfaces.

There is an integer overflow with attacker-supplied data being passed
as the argument to the kmalloc function.

Vulnerability impacts multiple vendors

The Sentinel Labs advisory states that many
different vendors are impacted, because NetUSB.ko
is third party software integrated with many
different small office / home office (SoHo) routers.

The Sentinel Labs advisory calls out the Netgear
R6700v3 router, so this is the one I went with for
my investigation. I found a used one for $25 on
eBay.

R6700v3 Version Info

Source: Netgear Advisory for CVE-2021-45388

R6700v3 Versions

Source: https://www.netgear.com/support/product/R6700V3.aspx

https://www.netgear.com/support/product/R6700V3.aspx

Target Versions

First Fixed Version: 1.0.4.122

Last Vulnerable Version: 1.0.4.120

Download, Extract, and Find

Download both 1.0.4.122 and 1.0.4.120 from Netgear Support

Use binwalk to extract the filesystems for each firmware image.

https://github.com/refirmlabs/binwalk

Going Ghidra On It

Now that we have found the two versions of the NetUSB.ko
kernel module and verified they are different, we need to do
some Binary Diffing to find the fix and work backwards to
find the TCP handshake process.

But first, some Ghidra…

Ghidra is Necessary to Do Bindiffing
I used Ghidra to export the two versions of NetUSB.ko to
an intermediary comparison language that Bindiff7
understands.

https://www.zynamics.com/bindiff.html

Diffing Menu In Bindiff

Diff Results

SoftwareBus_dispatchNormalEPMsgOut

Fix in 1.0.4.122

10.0.4.120

10.0.4.122

Tracing Backwards

Now that we have identified where the vulnerability is
fixed in the binary, we need to trace backwards to figure
out how that code branch can be reached.

run_init_sbus
This turns out to be the function
that defines the TCP socket
handshake. We know this for
two reasons.

1) AES functions correspond
to Blasty’s existing proof of
concept

run_init_sbus

2) The other reason is because the keys are
defined in the run_init_sbus function:

Router Access

How do we access the hardware device in order to verify
the necessary pre-conditions and verify our Proof of
Concept works?

Setting up Console Access on the Router

Root Access via UART

Nmap: Do we have port 20005 open?

What interfaces is it running on?

Existing PoC for CVE-2015-3036
The existing POC for CVE-2015-3036 which we will modify to work
with CVE-2021-45608 contains a lot of shell code and memory
address definitions for ROP chains that we don’t need. We are
basically only interested in one thing from the original POC:

1) The code for the initial auth handshake
2) “Computer name” input
3) The command we need to send to reach our target code branch
4) The command argument which triggers the vulnerability

Number 1 is provided for us in the existing PoC for CVE-2015-3036.
We have to provide 2, 3 and 4.

Computer Name Length Input

Computer Name Input

Command Id

Kernel logging
contains the hex
encoded
command. 0x805f
is a detail given to
us in the advisory
for
CVE-2021-45608
.

Command Id Specifics

Command Argument

Value needs to be somewhere in the ballpark of
0xfffffffff. This value is given to us by the advisory
for CVE-2021-45608, but the advisory does not tell
us how to send the command id and command
argument over the tcp connection.

Command Argument

Command Argument to Vulnerability

Additions to PoC

What does this PoC look like over the
network?

PoC Script Running

Vulnerability Output via DMESG

Exploitation?

From Sentinel Labs Advisory for CVE-2021-45608 (Linked
at the beginning of this presentation)

…restrictions make it difficult to write an exploit for this
vulnerability…

Summarize

This vulnerability and its documentation scenario (advisories,
previous work on related vulnerabilities, etc) lend themselves well
to demonstrating how to reverse engineer from public sources and
develop a Proof of Concept.

A lot of information was given to us to start with, but not a full
proof of concept.

Thanks

I’d like to publicly thank MAX VAN AMERONGEN
and BLASTY for their original research and
publications.

I do not wish to imply any sort of extensive
relationship here - I only know these folks by
reputation.

Questions???

https://twitter.com/nstarke

https://nstarke.github.io/

https://nstarke.bandcamp.com/

https://twitter.com/nstarke
https://nstarke.github.io/
https://nstarke.bandcamp.com/

